3.563 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=108 \[ \frac {2 (a B+A b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (3 a A+5 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d} \]

[Out]

2/5*(3*A*a+5*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*
(A*b+B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a*A*cos(
d*x+c)^(3/2)*sin(d*x+c)/d+2/3*(A*b+B*a)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {2954, 2968, 3023, 2748, 2639, 2635, 2641} \[ \frac {2 (a B+A b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (3 a A+5 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(2*(3*a*A + 5*b*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(A*b + a*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*(A*
b + a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*a*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx &=\int \sqrt {\cos (c+d x)} (b+a \cos (c+d x)) (B+A \cos (c+d x)) \, dx\\ &=\int \sqrt {\cos (c+d x)} \left (b B+(A b+a B) \cos (c+d x)+a A \cos ^2(c+d x)\right ) \, dx\\ &=\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {\cos (c+d x)} \left (\frac {1}{2} (3 a A+5 b B)+\frac {5}{2} (A b+a B) \cos (c+d x)\right ) \, dx\\ &=\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+(A b+a B) \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{5} (3 a A+5 b B) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 (3 a A+5 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{3} (A b+a B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 (3 a A+5 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (A b+a B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (A b+a B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.44, size = 86, normalized size = 0.80 \[ \frac {2 \left (5 (a B+A b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+3 (3 a A+5 b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sin (c+d x) \sqrt {\cos (c+d x)} (3 a A \cos (c+d x)+5 a B+5 A b)\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(2*(3*(3*a*A + 5*b*B)*EllipticE[(c + d*x)/2, 2] + 5*(A*b + a*B)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]
*(5*A*b + 5*a*B + 3*a*A*Cos[c + d*x])*Sin[c + d*x]))/(15*d)

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B b \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + A a \cos \left (d x + c\right )^{2} + {\left (B a + A b\right )} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b*cos(d*x + c)^2*sec(d*x + c)^2 + A*a*cos(d*x + c)^2 + (B*a + A*b)*cos(d*x + c)^2*sec(d*x + c))*sq
rt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 4.41, size = 371, normalized size = 3.44 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-24 A a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (24 a A +20 A b +20 a B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-6 a A -10 A b -10 a B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, b -9 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a +5 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a -15 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, b \right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*A*a*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+(24*A*a+20*A*b+20*B*a)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a-10*A*b-10*B*a)*sin(1/2*d*x+1/2*c)^2*co
s(1/2*d*x+1/2*c)+5*A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2))*a+5*a*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))-15*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*
b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [B]  time = 0.62, size = 128, normalized size = 1.19 \[ \frac {2\,A\,b\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x)),x)

[Out]

(2*A*b*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*B*a*(cos(c + d*x)^(1/2)*sin
(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*B*b*ellipticE(c/2 + (d*x)/2, 2))/d - (2*A*a*cos(c + d*x)^
(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________